Abstract

Non-negative sequences x and y satisfying $\lim_{k \to \infty} M \left(\frac{|x_k - y_k|}{\rho} \right) = 0$ for some $\rho > 0$ are called M- asymptotically equivalent of multiple L, where $x = (x_k)$ and $y = (y_k)$. Similarly, the strong M-asymptotically equivalence is obtained for $L = 1$ by using an Orlicz function M. This study contains some new definitions and related theorems about asymptotically equivalent sequences by using a lacunary sequence $\theta = (k_r)$, a strictly positive sequence $p = (p_k)$ and an Orlicz function.

Mathematics Subject Classification: 40A05, 40A35, 40G15

Keywords: Asymptotically equivalence; lacunary sequence; Orlicz function.

1. Preliminaries, Notations and Introduction

The space of all real (or complex) valued sequences is denoted by ω. Any vector subspaces of ω is called a sequence space. A sequence $\theta = (k_r)$ of positive integers is called lacunary if $0 < \rho < \infty$ and $\frac{h_r}{h_{r-1}} \to \infty$ as $r \to \infty$, where $h_r = k_r - k_{r-1}$. We get the intervals $I_r = (k_{r-1}, k_r]$ via the sequence θ and we denote the ratio k_r/k_{r-1} by q_r. The space N_θ of lacunary strongly convergent sequences was defined by Freedman et al. [4], $N_\theta = \{x = (x_i) \in \omega : \lim_{r \to \infty} \frac{1}{p_r} \sum_{i \in I_r} |x_i - s| = 0$ for some $s\}$. Orlicz [8] used the idea of Orlicz function to construct the space L^M. An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$, which is continuous, nondecreasing and convex with $M(0) = 0$, $M(x) > 0$ for $x > 0$ and $M(x) \to \infty$ as $x \to \infty$. An Orlicz function M is said to satisfy the $\Delta_2 -$ condition for all values of u if there exists a constant $K > 0$, such that $M(2u) \leq KM(u)(u \geq 0)$. It is easy to see that $K > 2$. The $\Delta_2 -$ condition is equivalent to the inequality $M(Lu) \leq KLM(u)$ for all values of u and $L > 1$. The inequality $M(\lambda x) < \lambda M(x)$ is provided for all $\lambda, \lambda \in (0,1)$ by an Orlicz function.

We shall give the well known inequality below which will be used throughout the paper;

$$|w_i + z_i|^{p_i} \leq T(|w_i|^{p_i} + |z_i|^{p_i})$$

where w_i and z_i are complex numbers, $T = \max(1, 2^{H-1})$ and $H = \text{supp}_1 < \infty$.

Marouf presented definitions for asymptotically equivalent sequences and asymptotic regular matrices in [5]. Patterson extended these concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for non-negative summability matrices in [7].

2. Main Results

We shall begin with the following definitions. For simplicity, here and in what follows, the function M is any Orlicz function.

Definition 2.1 Let $x = (x_k)$ and $y = (y_k)$ be two non-negative sequences and M is given any Orlicz function. If the equality $\lim_{k \to \infty} M \left(\frac{|x_k - y_k|^{p_k}}{p_k} \right) = 0$ holds for some $\rho > 0$, then it is said that the sequences x and y are M-asymptotically...
Theorem 2.8 which is together with the inequality $| \sum_{k=1}^{n} x_k - y_k | \leq \sum_{k=1}^{n} | x_k - y_k |$, we use the fact that $\sum_{k=1}^{\infty} | x_k - y_k | < \infty$, holds for every $\varepsilon > 0$ and for some $\rho > 0$, then it is said that the sequences x and y are M-asymptotically lacunary statistical equivalent of multiple L, and is denoted by $x \overset{ML}{\sim} y$. If $L = 1$ then it is said that the sequences x and y are M-asymptotically lacunary statistical equivalent.

Definition 2.2 Let $x = (x_k)$ and $y = (y_k)$ be two non-negative sequences and M is given any Orlicz function. If $\frac{1}{n} \left\{ \sum_{k=n}^{\infty} M \left(\frac{|x_k - y_k|}{\rho} \right) \right\} \rightarrow 0$, as $n \rightarrow \infty$, $\forall \varepsilon > 0$ and for some $\rho > 0$, then it is said that the sequences x and y are M-asymptotically statistical equivalent, that is, $x \overset{MS}{\sim} y$. If $L = 1$, we say x and y are M-asymptotically statistical equivalent.

Definition 2.3 Let M be any Orlicz function, θ be a lacunary sequence and $x = (x_k)$ and $y = (y_k)$ be two non-negative sequences. If the equality $\lim_{r \rightarrow \infty} \frac{1}{n_r} \left\{ \sum_{k \in I_r} M \left(\frac{|x_k - y_k|}{\rho} \right) \right\} \rightarrow 0$, holds for every $\varepsilon > 0$ and for some $\rho > 0$, then it is said that the sequences x and y are M-asymptotically lacunary statistical equivalent of multiple L, and is denoted by $x \overset{M^{L}}{\sim} y$. If $L = 1$ then it is said that the sequences x and y are M-asymptotically lacunary statistical equivalent.

Definition 2.4 Let M be any Orlicz function and $x = (x_k)$ and $y = (y_k)$ be two non-negative sequences. If the equality $\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} M \left(\frac{|x_k - y_k|}{\rho} \right) = 0$ holds for some $\rho > 0$, then it is said that the sequences x and y are strong M-asymptotically lacunary statistical equivalent of multiple L, and is denoted by $x \overset{M^{L}}{\sim} y$. If $L = 1$ then it is said that the sequences x and y are strong M-asymptotically lacunary statistical equivalent.

Definition 2.5 Let M be any Orlicz function, θ be a lacunary sequence and $x = (x_k)$ and $y = (y_k)$ be two non-negative sequences. If the equality $\lim_{r \rightarrow \infty} \frac{1}{n_r} \sum_{k \in I_r} M \left(\frac{|x_k - y_k|}{\rho} \right) = 0$ holds for some $\rho > 0$, then it is said that the sequences x and y are strong M-asymptotically lacunary equivalent of multiple L, and is denoted by $x \overset{M^{L}}{\sim} y$. If $L = 1$ then it is said that the sequences x and y are strong M-asymptotically lacunary equivalent.

Definition 2.6 Let M be any Orlicz function, θ be a lacunary sequence, (p_k) be a bounded sequence of positive real numbers and $x = (x_k)$ and $y = (y_k)$ be the sequences of non-negative real numbers. If $\frac{1}{n_r} \sum_{k \in I_r} M \left(\frac{|x_k - y_k|}{\rho} \right) \rightarrow 0$, as $r \rightarrow \infty$, for some $\rho > 0$, then it is said that the sequences x and y are strong $M(p)^{-\theta}$ asymptotically lacunary equivalent of multiple L, and is denoted by $x \overset{M(p)^{-\theta}}{\sim} y$. If $L=1$ then it is said that the sequences x and y are strong $M(p)^{-\theta}$ asymptotically lacunary equivalent.

Theorem 2.7 If M is an Orlicz function satisfy Δ_2-condition, then strong asymptotically equivalence implies strong M-asymptotically equivalence, that is, $(x \overset{W}{\sim} y)$ implies $(x \overset{MW}{\sim} y)$.

Proof Suppose that $x \overset{W}{\sim} y$. For $\varepsilon > 0$, let us choose $0 < \delta < 1$ such that $M(u) < \varepsilon$ for every u with $0 \leq u \leq \delta$. So, the equality $\frac{1}{n} \sum_{k=1}^{n} M \left(\frac{|x_k - y_k|}{\rho} \right) < \varepsilon$ holds, where the first summation is over $\frac{|x_k - y_k|}{\rho} \leq \delta$ and the second summation over $\frac{|x_k - y_k|}{\rho} > \delta$. Since M is continuous, $\frac{1}{n} \sum_{k=1}^{n} M \left(\frac{|x_k - y_k|}{\rho} \right) < \varepsilon$ and for $\frac{|x_k - y_k|}{\rho} > \delta$ we use the fact that $M \left(\frac{|x_k - y_k|}{\rho} \right) < 1 + \frac{|x_k - y_k|}{\rho}$. Since M is non-decreasing and convex, $M \left(\frac{|x_k - y_k|}{\rho} \right) < 1 + \frac{|x_k - y_k|}{\rho}$. Therefore, $M \left(\frac{|x_k - y_k|}{\rho} \right) < \frac{1}{2} K \left(\frac{|x_k - y_k|}{\rho} \right)$. Since M satisfies the Δ_2-condition. Hence, we get the inequality $\frac{1}{n} \sum_{k=1}^{n} M \left(\frac{|x_k - y_k|}{\rho} \right) \leq \left(\frac{K M(2)}{\delta} \right) \frac{1}{n} \sum_{k=1}^{n} \left(\frac{|x_k - y_k|}{\rho} \right)$, which is together with the inequality $\frac{1}{n} \sum_{k=1}^{n} M \left(\frac{|x_k - y_k|}{\rho} \right) < \varepsilon$, so the proof has been completed, that is, $x \overset{WM}{\sim} y$.

Theorem 2.8 If M_1 and M_2 are two Orlicz functions satisfying Δ_2-condition, then the following statements hold:

If \(x^{M_2} y \) then \(x^{M_1+M_2} y \),

(ii) If \(x^{M_1+M_2} y \) then \(x^{M_1+M_2} y \).

Proof (i) If \(x^{M_2} y \) then there exists \(\rho > 0 \) such that

\[
\lim_{k \to \infty} M_2 \left(\frac{|y_k - L|}{\rho} \right) = 0. \tag{2}
\]

Choose \(\varepsilon > 0 \) and \(0 < \delta < 1 \) such that \(M_1(u) < \varepsilon \) for every \(u \) with \(0 \leq u \leq \delta \). Let us consider \(\lim_{k \to \infty} M_1(A_k) = \lim_{k,A_k \leq \delta} M_1(A_k) = \lim_{k,A_k \geq \delta} M_1(A_k) \), where \(A_k = M_2 \left(\frac{|y_k - L|}{\rho} \right) \). So we have

\[
\lim_{k,A_k \leq \delta} M_1 \left(M_2 \left(\frac{|y_k - L|}{\rho} \right) \right) \leq M_1(2) \lim_{k,A_k \geq \delta} M_2 \left(\frac{|y_k - L|}{\rho} \right). \tag{3}
\]

For \(A_k \geq \delta \), we have \(A_k < \frac{\Delta k}{\delta} < 1 + \frac{\Delta k}{\delta} \). Since \(M \) is non-decreasing and convex, it follows that,

\[
M_1(A_k) < M_1(1 + \frac{\Delta k}{\delta}) \leq M_1(2) + \frac{1}{2} M_1(\frac{\Delta k}{\delta}) \cdot \delta. \tag{4}
\]

and

\[
\lim_{k,A_k \geq \delta} M_1 \left(M_2 \left(\frac{|y_k - L|}{\rho} \right) \right) \leq \max \left(1, K \delta^{-1} M_1(2) \right) \lim_{k,A_k \geq \delta} M_2 \left(\frac{|y_k - L|}{\rho} \right). \tag{5}
\]

From (2), (3), (4) and (5), we have \(\lim_{k \to \infty} M_1 \left(M_2 \left(\frac{|y_k - L|}{\rho} \right) \right) = 0 \). Hence \(x^{M_1+M_2} y \).

(ii) Suppose that \(x^{M_1+M_2} y \). Therefore,

\[
\lim_{k \to \infty} M_1 \left(\frac{y_k - L}{\rho} \right) = 0
\]

and

\[
\lim_{k \to \infty} M_2 \left(\frac{y_k - L}{\rho} \right) = 0.
\]

So the proof can be completed, since the equality

\[
(M_1 + M_2) \left(\frac{y_k - L}{\rho} \right) = M_1 \left(\frac{y_k - L}{\rho} \right) + M_2 \left(\frac{y_k - L}{\rho} \right)
\]

holds.

Theorem 2.9 If \(M \) is an Orlicz function and \(\theta \) is a lacunary sequence, then the following statements hold:

(i) If \(\lim \sup_{r \to \infty} q_r < \infty \) then \(x^{N^M} y \) implies \(x^{W^M} y \)

(ii) If \(\lim \inf_{r \to \infty} q_r > 1 \) then \(x^{W^M} y \) implies \(x^{N^M} y \)

(iii) If \(1 < \lim \inf_{r \to \infty} q_r \leq \lim \sup_{r \to \infty} q_r < \infty \), then \(x^{W^M} y \Leftrightarrow x^{N^M} y \).

Proof

(i) If \(\lim \sup_{r \to \infty} q_r < \infty \) then there exists \(K > 0 \) such that \(q_r < K \) for every \(r \). Now suppose that \(x^{N^M} y \) and \(\varepsilon > 0 \). There exists \(m_0 \) such that for every \(m \geq m_0 \),

Volume 2, No. 1 available at www.scischolars.com/journals/index.php/sjrmcs/issue/archive 111
We can also find $R > 0$ such that $H_m \leq R$ for all m. Let n be any integer with $k_r \geq n > k_{r-1}$. Now from the inequalities

$$\frac{1}{n} \sum_{k=1}^{n} M \left(\left| \frac{x_k - y_k}{\rho} \right| \right) \leq \frac{1}{k_{r-1}} \sum_{k=1}^{k_r} M \left(\left| \frac{x_k - y_k}{\rho} \right| \right)$$

$$= \frac{1}{k_{r-1}} \sum_{k=1}^{m_0} \sum_{k \in I_m} M \left(\left| \frac{x_k - y_k}{\rho} \right| \right) +$$

$$+ \frac{1}{k_{r-1}} \sum_{k=m_0}^{k_r} \sum_{k \in I_m} M \left(\left| \frac{x_k - y_k}{\rho} \right| \right)$$

$$\leq \frac{1}{k_{r-1}} \sum_{k=1}^{m_0} \sum_{k \in I_m} M \left(\left| \frac{x_k - y_k}{\rho} \right| \right) + \frac{\varepsilon}{k_{r-1}} (k_r - k_{m_0})$$

$$\leq \frac{1}{k_{r-1}} \sup_{1 \leq k \leq m_0} H_k k_{m_0} + \varepsilon K$$

$$\leq \frac{R}{k_{r-1}} k_{m_0} + \varepsilon K$$

we complete the proof, that is, $x^{\omega M} y$.

(ii) Suppose that $x^{\omega M} y$. If $\liminf q_r > 1$ then there exists a $\delta > 0$ such that $q_r = \left(\frac{k_r}{k_{r-1}} \right) \geq 1 + \delta$ for sufficiently large r which implies $\left(\frac{h_r}{q_r} \right) \geq \frac{\delta}{\delta + 1}$.

Hence we get

$$\frac{1}{k_r} \sum_{k=1}^{k_r} M \left(\left| \frac{x_k - y_k}{\rho} \right| \right) \geq \frac{1}{k_r} \sum_{k \in I_r} M \left(\left| \frac{x_k - y_k}{\rho} \right| \right)$$

$$= \frac{h_r}{k_r h_r} \sum_{k \in I_r} M \left(\left| \frac{x_k - y_k}{\rho} \right| \right)$$

$$\geq \frac{\delta}{\delta + 1} \frac{1}{k_r} \sum_{k \in I_r} M \left(\left| \frac{x_k - y_k}{\rho} \right| \right)$$

which proves the claim, that is, $x^{\omega M} y$.

(iii) This immediately follows from (i) and (ii).

Theorem 2.10 If M is an Orlicz function and θ is a lacunary sequence, then

(i) If $x^{\omega M} y$ then $x^{\omega \theta} y$.

(ii) If $x^{\omega \theta} y$ and x, y are bounded sequences, then $x^{\omega M} y$.
(iii) If \(x \) and \(y \) are bounded sequences then \(x \overset{N}{\preceq} y \Longleftrightarrow x \overset{M}{\prec} y \).

Proof

(i) If \(x \overset{M}{\prec} y \), then there exists \(\rho > 0 \) such that

\[
\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in \mathbb{R}_r} M\left(\frac{|x_k - L|}{\rho}\right) = 0.
\]

For \(\varepsilon > 0 \) with the equality

\[
\frac{1}{h_r} \sum_{k \in \mathbb{R}_r} M\left(\frac{|x_k - L|}{\rho}\right) = \frac{1}{h_r} \sum_{1} M\left(\frac{|x_k - L|}{\rho}\right) + \frac{1}{h_r} \sum_{2} M\left(\frac{|x_k - L|}{\rho}\right),
\]

the first summation is over \(\frac{|x_k - L|}{y_k} \geq \varepsilon \) and the second one over \(\frac{|x_k - L|}{y_k} < \varepsilon \). Therefore,

\[
\frac{1}{h_r} \sum_{k \in \mathbb{R}_r} M\left(\frac{|x_k - L|}{\rho}\right) \geq \frac{1}{h_r} \sum_{1} M\left(\frac{|x_k - L|}{\rho}\right) \geq M\left(\frac{\varepsilon}{\rho} \right)\left|\{ k \in I_r: \frac{|x_k - L|}{y_k} \geq \varepsilon \} \right|.
\]

This completes the proof.

(ii) Suppose that \(x \) and \(y \) are two bounded sequences and \(x \overset{N}{\preceq} y \). For some \(\rho > 0 \) there exists \(D > 0 \) such that \(\frac{|x_k - L|}{y_k} \leq D \) for all \(k \). For \(\varepsilon > 0 \) we have the equality

\[
\frac{1}{h_r} \sum_{k \in \mathbb{R}_r} M\left(\frac{|x_k - L|}{\rho}\right) = \frac{1}{h_r} \sum_{1} M\left(\frac{|x_k - L|}{\rho}\right) + \frac{1}{h_r} \sum_{2} M\left(\frac{|x_k - L|}{\rho}\right).
\]

Here, the first summation is over \(\frac{|x_k - L|}{y_k} \geq \varepsilon \) and the second one over \(\frac{|x_k - L|}{y_k} < \varepsilon \). Therefore,

\[
\frac{1}{h_r} \sum_{k \in \mathbb{R}_r} M\left(\frac{|x_k - L|}{\rho}\right) \leq M(D) \frac{1}{h_r} \left|\{ k \in I_r: \frac{|x_k - L|}{y_k} \geq \varepsilon \} \right| + M\left(\frac{\varepsilon}{\rho}\right).
\]

This completes the proof.

(iii) Follows from (i) and (ii).

Theorem 2.11 If \(M \) is an Orlicz function and \(\theta = (k_r) \) is a lacunary sequence, then the following statements hold:

(i) If \(\limsup_r q_r < \infty \) then \(x \overset{M}{\preceq} y \) implies \(x \overset{M}{\prec} y \).

(ii) If \(\liminf_r q_r > 1 \) then \(x \overset{M}{\prec} y \) implies \(x \overset{M}{\preceq} y \).

(iii) If \(1 < \liminf_r q_r \leq \limsup_r q_r < \infty \), then \(x \overset{M}{\preceq} y \Longleftrightarrow x \overset{M}{\prec} y \)

Proof
(i) If \(\limsup_{r} q_{r} < \infty \) then there exists \(K > 0 \) such that \(q_{r} < K \) for every \(r \).

Now suppose that \(x \overset{M}{\lesssim}_{y} y \) and take \(A_{r} = \left\{ r \in I_{r}; M \left(\frac{|x_{k} - L|}{y_{k}} \right) \geq \varepsilon \right\} \). There is an \(r_{0} \) such that \(\frac{h_{r}}{k_{r}} < \varepsilon \) for all \(r > r_{0}, \varepsilon > 0 \).

Now let \(B = \max\{A_{r}; 1 < r < r_{0}\} \) and let \(n \) be any integer satisfying \(k_{r} \geq n > k_{r-1} \), then we have the inequalities

\[
\frac{1}{n} \left\{ k \leq n; M \left(\frac{|x_{k} - L|}{y_{k}} \right) \geq \varepsilon \right\} \leq \frac{1}{k_{r-1}} \left\{ k \leq k_{r}; M \left(\frac{|x_{k} - L|}{y_{k}} \right) \geq \varepsilon \right\} \\
= \frac{1}{k_{r-1}} \{ A_{1} + A_{2} + \ldots + A_{n} + \ldots A_{r} \} \leq \frac{B}{k_{r-1}} k_{r-1} r_{0} + \frac{1}{k_{r-1}} \sum_{m=r_{0}+1}^{k_{r}} h_{m} A_{r} \leq \frac{B}{k_{r-1}} r_{0} + \frac{1}{k_{r-1}} \sup_{m} h_{m} \sum_{r_{0}+1}^{k_{r}} h_{m} k_{r-1} r_{0} + q_{r} \varepsilon \leq B \frac{k_{r} r_{0} - k_{r} r_{0}}{k_{r-1}} \leq B \frac{k_{r} r_{0}}{k_{r-1}} \varepsilon .
\]

which completes the proof, that is, \(x \overset{M}{\lesssim} y \).

(ii) Let \(\liminf_{r} q_{r} > 1 \). There exists \(\delta > 0 \) such that \(q_{r} = \left(\frac{k_{r}}{k_{r-1}} \right) \geq 1 + \delta \) for sufficiently large \(r \) which implies that

\[
\frac{h_{r}}{k_{r}} \geq \frac{\delta}{\delta + 1} .
\]

If \(x \overset{M}{\lesssim} y \) then for every \(\varepsilon > 0 \) and for sufficiently large, \(r \), we have

\[
\frac{1}{k_{r}} \left\{ k \leq k_{r}; M \left(\frac{|x_{k} - L|}{y_{k}} \right) \geq \varepsilon \right\} \geq \frac{1}{k_{r}} \left\{ k \in I_{r}; M \left(\frac{|x_{k} - L|}{y_{k}} \right) \geq \varepsilon \right\} \geq \frac{\delta}{\delta + 1} \frac{1}{h_{r}} \left\{ k \in I_{r}; M \left(\frac{|x_{k} - L|}{y_{k}} \right) \geq \varepsilon \right\} .
\]

which completes the proof.

(iii) This immediately follows from (i) and (ii).

If \(0 < p \leq t \), then we have the following theorem.

Theorem 2.12 If \(M \) is an Orlicz function and \(\theta = (k_{r}) \) is a lacunary sequence, then \(x^{N_{\theta}^{M_{t}}} \) \(y \) implies \(x^{N_{\theta}^{M_{p}}} \) \(y \).

Proof Suppose that \(x^{N_{\theta}^{M_{t}}} \) \(y \). It follows from Holder’s inequality,

\[
\frac{1}{h_{t}} \sum_{k \in I_{r}} \left[M \left(\frac{|x_{k} - L|}{y_{k}} \right) \right]^{p} \leq \left[\frac{1}{h_{t}} \sum_{k \in I_{r}} \left(\frac{|x_{k} - L|}{y_{k}} \right) \right]^{t} \left[\frac{1}{h_{t}} \sum_{k \in I_{r}} \left(\frac{|x_{k} - L|}{y_{k}} \right) \right]^{p-t} .
\]

Thus we have \(x^{N_{\theta}^{M_{p}}} \) \(y \).
We now consider the sequences \(p = (p_k) \) and \(t = (t_k) \) which are not constants.

Theorem 2.13 If \(M \) is an Orlicz function, \(\theta = (k_r) \) is a lacunary sequence, \(0 < p_k \leq t_k \) for all \(k \) and \(\left(\frac{1}{p_k} \right) \) is the bounded, then \(x^{\frac{M(t)}{\frac{1}{p_k}}}_\theta \) \(y \) implies \(x^{\frac{M(p)}{\frac{1}{t_k}}}_\theta \) \(y \).

Proof Suppose that \(x^{\frac{M(t)}{\frac{1}{p_k}}}_\theta \) \(y \), \(z_k = \left[M\left(\frac{1}{p_k} \right) \right]^{\frac{1}{t_k}} \lambda_{k-}(p_k/t_k) \). So we have \(0 < \lambda \leq \lambda_k \leq 1 \). We define the sequences \((u_k)\) and \((v_k)\) as \(u_k = z_k \) if \(z_k \geq 1 \) and \(v_k = 0 \) if \(z_k < 1 \). If \(v_k = z_k \) and \(u_k = 0 \), then we have \(z_k = u_k + v_k \); \(z_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k} \); \(u_k^{\lambda_k} \leq u_k \leq z_k \) and \(v_k^{\lambda_k} \leq v_k \). Therefore,

\[
\frac{1}{h_r} \sum_{k \in r} z_k^{\lambda_k} = \frac{1}{h_r} \sum_{k \in r} (u_k^{\lambda_k} + v_k^{\lambda_k}) \\
\leq \frac{1}{h_r} \sum_{k \in r} z_k + \frac{1}{h_r} \sum_{k \in r} v_k^{\lambda_k}.
\]

Now for each \(r \), the inequalities

\[
\frac{1}{h_r} \sum_{k \in r} v_k^{\lambda_k} = \sum_{k \in r} \left(\frac{1}{h_r} v_k \right)^\lambda \left(\frac{1}{h_r} \right)^{1-\lambda} \\
\leq \left(\sum_{k \in r} \left(\frac{1}{h_r} v_k \right)^\lambda \right)^\lambda \left(\sum_{k \in r} \left(\frac{1}{h_r} \right)^{1-\lambda} \right)^{1-\lambda} \\
< \left(\frac{1}{h_r} \sum_{k \in r} v_k \right)^\lambda
\]

hold. Therefore, we have the inequalities

\[
\frac{1}{h_r} \sum_{k \in r} \left[M\left(\frac{1}{p_k} \right) \right]^{p_k} z_k^{\lambda_k} = \frac{1}{h_r} \sum_{k \in r} z_k^{\lambda_k} \\
\leq \frac{1}{h_r} \sum_{k \in r} z_k + \frac{1}{h_r} \sum_{k \in r} v_k^{\lambda_k} \\
= \left\{ \begin{array}{ll}
\frac{1}{h_r} \sum_{k \in r} z_k + \left(\frac{1}{h_r} \sum_{k \in r} z_k \right)^\lambda, & z_k \geq 1 \\
\frac{1}{h_r} \sum_{k \in r} z_k + \left(\frac{1}{h_r} \sum_{k \in r} z_k \right)^\lambda, & z_k < 1
\end{array} \right\} \\
\leq \left\{ \begin{array}{ll}
\frac{1}{h_r} \sum_{k \in r} z_k, & z_k \geq 1 \\
2 \left(\frac{1}{h_r} \sum_{k \in r} z_k \right)^\lambda, & z_k < 1
\end{array} \right\}
\]

which completes the proof, that is, \(x^{\frac{M(p)}{\frac{1}{t_k}}}_\theta \) \(y \).
References

